Global RNA Sequencing of *Escherichia coli* from Exposure to Nanodiamonds and Carbon Nanotubes with Surface Coatings

Joanne Vassallo¹, Michele Kiernan¹, Laura Saarimäki², Antonio Federico², Dario Greco², Rich Boden¹ and Richard D. Handy^{1*}

Introduction

- Engineered nanomaterials come in different shapes, sizes, compositions and surface coatings.
- Novel materials are driving innovation with many different and specific applications.
- There will be inevitable release of nanomaterials to the environment, with

Material	Uncoated		COOH-coated		Ammonium-coated		PEG-coated	
	Size (nm)	Exposure (mg/L)	Size (nm)	Exposure (mg/L)	Size (nm)	Exposure (mg/L)	Size (nm)	Exposure (mg/L)
Nanodiamonds	-		59.00 ± 5.57	100	55.33 ± 17.03	100	68.00 ± 5.13	100
Multi-walled carbon nanotubes	28.67 ± 2.33	25	42.33 ± 9.02	25	42.33 ± 7.22	25	64.67 ± 14.84	25

Physico-chemical Properties

concerns for microbes.

Amine functional coating $(-NH_2)$ for MWCNTs; Nominal exposure concentrations (n = 3). More information in Vassallo et al, 2018: https://doi.org/10.1016/j.ecoenv.2018.06.085

Global RNA Sequencing of E. coli K-12 MG1655

- 1. Do changes in RNA expression reflect the toxicity ranking from the in *vivo* results?
- 2. Is there a coating effect on the RNA profiles of *E. coli* K-12?

Global RNA Sequencing

Figure 2a: Differentially expressed genes are filtered by absolute fold-change > 2 and adjusted *p* < 0.01. **Figure 2b**: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping.

Results

- Bacterial growth inhibitory effects were associated with the chemistry of the materials, exposure concentration, particle behaviour and the surface chemistry of the coatings.
- Observations are based on messenger RNA abundance of the exposures to different materials relative to the unexposed bacterial growth control.
- A large proportion of genes is deregulated in all conditions (Figure 2a).
- Nanodiamonds display negative effects/down-regulation for an 'inert' material (Figure 2b).

Conclusions

- Global RNA sequencing detected differences in gene expression that suggest material-type effects, and specific coating effects.
- The coating is only one factor in material properties.
- Omics can be used as a pivotal tool to help resolve complexity.

¹School of Biological and Marine Sciences, University of Plymouth, UK.
²Kalevantie 4, 33100, Tampere, Tampere University, Finland.
*Contact: <u>R.Handy@plymouth.ac.uk</u>

This research was funded by EU FP7 NANOSOLUTIONS Project, Grant Agreement No. 309329. Attendance to conference by J. Vassallo funded by Vitis Regulatory Ltd.

